Eduardo Cortés Cortés*[a], [1], Cristina A. Cortés Romero[a] and Olivia García Mellado[b]

[a] Instituto de Química [2], Universidad Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, México, D.F. [b] F.E.S. Cuautitlán-UNAM, Campo 1, Cuautittlán Izcalli, Edo. de México, 54740. México Received June 4, 2002

Abstract

A series of eleven new 2-methylthio-3H-7-[($o-; m$ - and p-substituted) phenoxy]-4-(p-substituted-phenyl)[1,5]benzodiazepines, which have potentially useful pharmacological activities, has been synthesized by condensing the $4-\left[\left(o-; m\right.\right.$ - and $\left.p-\mathrm{R}_{1}\right)$ phenoxy $]-1,2$-phenylendiamines with 3,3-dimercapto-1-($p-\mathrm{R}_{2}$-phenyl)-2-propen-1-one. Afterward the $1 H$-[1,5]benzodiazepine-2-thiones obtained were treated with sodium hydride and methyl iodide. The structure of all products was corroborated by ir, ${ }^{1} \mathrm{H} \mathrm{nmr},{ }^{13} \mathrm{C} \mathrm{nmr}$ and ms.

J. Heterocyclic Chem., 39, 1321(2002).

The benzodiazepines belong to an important class of compounds possessing a wide variety of pharmacological activity [3] such as anxiolytics [4], anticonvulsants [5] and hypnotics [6]. These compounds have been extensively investigated for their wide-ranging effects on the brain and spinal cord. The action mechanism is mediated by the central benzodiazepine receptor a binding site that allosterically modulates chloride channel by $\mathrm{GABA}_{\mathrm{A}}$ receptors in the central nervous system [7].

In recent years the benzodiazepines have been used in Alzheimer's disease [8] as well as in inflammatory processes [9]. The use of benzodiazepines in the therapeutic applications has increased exponentially over the last 20 years also these compounds are now the most commonly prescribed group of drugs.
Many papers have been published describing the synthesis of benzodiazepine derivatives. We have previously reported the synthesis of 5-methylthio-4H-1-(p-substituted-phenyl)-3a-(p-substituted-phenyl)-9-[(m - and p-substi-tuted)-phenoxy]-3a,4-[1,2,4]oxadiazolo[4,5-a][1,5]benzodiazepines [10], 2,3-dihydro-2-[o-; and p-substituted)anilinyl-idene]-1H-4-(p-methylphenyl)-7-[(o-; and p-methyl)-phenoxy]-1,5-benzodiazepines [11] and 2-methylthio-3H-4(p-substituted-phenyl)-7-[(o - and p-substituted)phenylthio]-1,5-benzodiazepines [12].
In our continuous research program on the synthesis and the spectral property determination of [1,5]benzodiazepines derivatives with possible pharmacological activity, we described in this report the synthesis of the novel compounds 2-methylthio-3H-7-[(o-; m- and p-substi-tuted)phenoxy]-4-(p-substituted-phenyl)-[1,5]benzodiazepines IV,1-11 as shown in Scheme 1.

The reaction of compounds I with II, has been performed in anhydrous ortho-xylene at reflux for eight hours. The $1 H$-[1,5]benzodiazepine-2-thiones III, have been obtained in $54-77 \%$ yield. Treatment of compounds III, with sodium hydride and methyl iodide at reflux in ortho-xylene for four hours afforded the compounds 2-methylthio-3H-7-[(o-; m- and p-substituted)phenoxy]-4-

(p-substituted-phenyl)-[1,5]benzodiazepines IV,1-11, which have been obtained in $83-98 \%$.

The infrared spectrum of compounds $\mathbf{1 - 1 1}$ displayed absorptions at $1597-1590 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{N}$ stretching, at 1317 cm^{-1} for C-S stretching, at 1263-1252 and 1260-1249 cm^{-1} for C-N stretching, at 1192-1163 and 1090-1029 cm^{-1} for C-O stretching and the corresponding absorptions for aromatic and R-substituents.

In the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra the presence of three proton signals at δ 2.27-2.45 singlet were assigned to the methyl joined to sulphur $\left(\mathrm{S}-\mathrm{CH}_{3}\right)$. The presence of one broad proton signal at $\delta 3.40$ was consistent with the methylene protons at $\mathrm{C}-3$. The presence of a three protons multiplet signal at $\delta 6.92$ 7.37 was assigned to the aromatic protons at C-6, C-8 and $\mathrm{C}-9$ of the benzodiazepine framework. The other aromatic protons appeared as a multiplet and an AA'BB' system at δ 6.63-8.02 and with the signal for the R-substituents.

The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra of compounds $\mathbf{1 - 1 1}$ are given en Table 1. The signals were confirmed by using HETCOR, long range HETCOR, COSY and NOESY nmr experiments operating at 300 and 500 MHz .

Table 1
${ }^{13}$ C NMR Spectral Data for Compounds $\mathbf{1 - 1 1}$

IV, (1-11)

Compounds	1	2	3	4	5	6	7	8	9	10	11
R_{1}	H	$o-\mathrm{CH}_{3}$	$m-\mathrm{CH}_{3}$	p-CH3	$o-\mathrm{OCH}_{3}$	$m-\mathrm{OCH}_{3}$	p- OCH_{3}		$o-\mathrm{OCH}_{3}$	$m-\mathrm{OCH}_{3}$	p- OCH_{3}
R_{2}	CH_{3}	OCH_{3}	OCH_{3}	OCH_{3}	OCH_{3}						
C-2	157.1	154.5	155.3	154.6	154.8	155.4	155.1	157.1	155.6	155.4	155.1
C-3	39.4	39.5	39.5	39.4	39.4	39.5	39.5	39.3	39.4	39.4	39.3
C-4	153.8	153.8	154.0	153.7	153.6	153.9	153.8	153.7	153.8	153.2	153.2
C-5a	140.9	140.9	141.0	140.8	140.8	140.9	140.9	141.0	141.0	141.1	141.0
C-6	116.9	115.0	116.9	116.2	114.8	117.1	115.4	116.8	115.0	117.0	115.3
C-7	153.7	154.8	154.0	154.3	151.5	153.5	150.1	153.3	151.2	153.4	150.1
C-8	116.9	115.8	117.1	116.5	115.7	117.2	116.1	116.7	115.6	117.2	115.9
C-9	129.0	129.0	129.0	128.9	128.8	129.0	129.0	129.0	129.0	129.0	129.0
C-9a	136.6	136.2	136.6	136.3	136.1	136.7	136.1	136.5	136.4	136.7	136.0
C-1'	155.3	154.4	157.2	155.0	154.6	158.4	154.9	155.2	154.3	158.5	154.9
C-2'	119.0	130.1	116.2	119.2	154.8	105.1	121.0	119.0	155.3	105.0	121.0
C-3'	129.7	131.5	129.5	130.2	121.4	160.9	114.9	129.7	121.4	161.0	114.9
C-4'	123.3	124.1	119.8	132.9	121.1	109.0	156.0	123.2	121.1	109.0	156.0
C-5'	129.7	127.2	129.3	130.2	124.9	130.1	114.9	129.7	124.9	130.1	114.9
C-6'	119.0	120.1	124.2	119.2	112.9	111.2	121.0	119.0	112.9	111.2	121.0
C-1"	134.1	134.2	134.2	134.1	134.2	134.2	134.2	136.5	136.8	129.5	129.6
C-2"; C-6"	128.0	128.0	128.1	128.0	128.0	128.1	128.0	129.8	129.9	129.9	129.9
C-3"; C-5"	129.3	129.3	129.4	129.2	129.3	129.4	129.3	113.9	114.0	114.0	114.0
C-4"	141.2	141.2	141.3	141.1	141.1	141.3	141.2	161.8	161.8	161.9	161.8
$\mathrm{S}-\mathrm{CH}_{3}$	13.7	13.8	13.8	13.7	13.7	13.8	13.8	13.7	13.8	13.8	13.8
R_{1}	--	16.2	21.4	20.6	55.9	55.3	55.6	--	56.0	55.4	55.6
R_{2}	21.3	21.4	21.4	21.3	21.3	21.4	21.4	55.3	55.4	55.4	55.4

Note: The numbering of the phenyl ring is only for the assignment of the chemical shifts of the carbon in ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra.

The mass spectra of compounds $\mathbf{1 - 1 1}$ include ions with m / z corresponding to the molecular ion $[\mathrm{M}]^{+}$as the base peak, $[\mathrm{M}-15]^{+},[\mathrm{M}-33]^{+},[\mathrm{M}-47]^{+},[\mathrm{M}-61]^{+},[\mathrm{M}-72]^{+}$, $\left[217+\mathrm{R}_{2}\right]^{+},\left[102+\mathrm{R}_{2}\right]^{+}$and $\left[76+\mathrm{R}_{2}\right]^{+}$. The mass spectra of the compounds exhibit a stable molecular ion and the main fragmentation was consistent with the assigned structures. The proposed fragmentation pathways leading to the formation of number of important daughter ions have been confirmed for the corresponding parent ion spectra by col-lision-induced dissociation experiments. The elemental composition of the molecular ion and the principal fragment ion was determined by exact mass measurements.

EXPERIMENTAL

The ir spectra were recorded on a Nicolet Magna TR-750 spectrophotometer. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra were recorded on a Varian Unity 300 spectrometer operating at 300 MHz and the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra were recorded on a Varian Unity 500 spectrometer operating at 125 MHz in deuteriochloroform solution
containing tetramethylsilane as the internal standard with chemical shifts $\delta(\mathrm{ppm})$ expressed downfield from tetramethylsilane. The mass spectra were measured on a JEOL JMSAX505 and JEOL MS-SX 102A high-resolution mass spectrometer with accurate mass determination of the molecular ion and the principal fragment ions, using the direct inlet system. The spectra were recorded by electron impact at an ionization chamber temperature of 190° and ionizing electron energy of 70 eV .

Compounds I and II were prepared following literature methods with modifications [13].

General Procedure for the Synthesis of the 2,3-Dihydro-4-[$(p-$ R_{2})phenyl]-7-[($o-; m$ - and $\left.p-\mathrm{R}_{1}\right)$ phenoxy]-1 H-[1,5]benzodi-azepine-2-thiones III.

A mixture of 0.01 mole of $4-\left[\left(o-; m\right.\right.$ - and $\left.p-\mathrm{R}_{1}\right)$ phenoxy $]-1,2-$ phenylendiamines I, 0.01 mole of 3,3-dimercapto-1-[(p R_{2})phenyl]-2-propen-1-one II, in 150 ml of dry ortho-xylene was heat at reflux for eight hours. After cooling, the crystals were collected and washed with hexane to yield the $1 H-[1,5]$ benzodi-azepine-2-thiones III, with $54-77 \%$ yield.

General Procedure for the Synthesis of the 2-Methylthio-3H-7[(o-; m - and p-substituted)phenoxy]-4-(p-substituted-phenyl)[1,5]benzodiazepines IV,1-11.

A mixture of 0.007 mole of 2,3-Dihydro-4-[($p-\mathrm{R}_{2}$)phenyl]-7[$\left(o-; m\right.$ - and $\left.p-\mathrm{R}_{1}\right)$ phenoxy]-1H-[1,5]benzodiazepine-2-thiones III, 0.021 mole of sodium hydride in 100 ml of dry orthoxylene was heat at reflux for one hour. After the reaction mixture was cooled at room temperature, 0.021 mole of methyl iodide was subsequently added dropwise over a few minutes and the reflux was continued for four additional hours. The reaction mixture was cooled to room temperature, filtered and the organic solution was dried with sodium sulphate, filtered and evaporated in vacuo to yield a semisolid; the compounds IV, with $83-98 \%$ yield.

4-(p-Methylphenyl)-2-methylthio-3H-7-phenoxy-[1,5]benzodiazepine (1).

This compound was obtained as orange semisolid in 98\% yield; ir (chloroform): v $\mathrm{C}=\mathrm{N} 1592, \mathrm{CH}_{3}-\mathrm{S} 1317, \mathrm{C}-\mathrm{N} 1261$ and 1240, C-O 1186 and $1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}{ }^{\prime \prime}-\mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}\right), 3.40(\mathrm{bs}, 2 \mathrm{H}, 3-\mathrm{H})$, 6.97 (dd, 1H, J = 2.7, $8.7 \mathrm{~Hz}, 8-\mathrm{H}), 7.07$ (d, 1H, J = $3.3 \mathrm{~Hz}, 6-\mathrm{H}$), 7.08 (dd, 1H, J = 1.8, $7.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$), 7.08 (dd, $1 \mathrm{H}, \mathrm{J}=1.8,7.2 \mathrm{~Hz}$, $\left.6^{\prime}-\mathrm{H}\right), 7.11\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=0.9,7.4 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.26$ and 7.94 (AA'BB', $4 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}$, phenyl protons of "D" ring), 7.34 (dd, $1 \mathrm{H}, \mathrm{J}=1.8,7.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}$), $7.34\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8,7.5 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, 7.37 (d, 1H, J = 9.0 Hz, 9-H); ms: m/z 372 (M)+, $374[\mathrm{M}+2]^{+}$.

Anal. Calcd. for: $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 74.16 ; \mathrm{H}, 5.41 ; \mathrm{N}, 7.52$. Found: C, 74.22; H, 5.50; N, 7.41.

7-(o-Methylphenoxy)-4-(p-methylphenyl)-2-methylthio-3H[1,5]benzodiazepine (2).

This compound was obtained as orange semisolid in 91% yield; ir (chloroform): v $\mathrm{C}=\mathrm{N} 1593, \mathrm{CH}_{3}-\mathrm{S} 1317, \mathrm{C}-\mathrm{N} 1256$ and 1236, C-O 1183 and $1082 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 2.27 (s, 3H, C $2^{\prime}-\mathrm{CH}_{3}$), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}{ }^{\prime \prime}-\mathrm{CH}_{3}\right.$), 2.45 ($\mathrm{s}, 3 \mathrm{H}$, S-CH3 $), 3.40(\mathrm{bs}, 2 \mathrm{H}, 3-\mathrm{H}), 6.92$ (dd, $1 \mathrm{H}, \mathrm{J}=2.7,7.2 \mathrm{~Hz}, 8-\mathrm{H}$), $6.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.99\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5,8.1 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right)$, 7.08 (dd, 1H, J = 1.6, 8.1 Hz, 3'-H), 7.08 (dt, 1H, J = $1.5,7.5 \mathrm{~Hz}$, $\left.4^{\prime}-\mathrm{H}\right), 7.18\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=2.1,8.1 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.25$ and 7.93 (AA'BB', $4 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$, phenyl protons of " D " ring), $7.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.3$ $\mathrm{Hz}, 9-\mathrm{H})$; ms: m/z $386(\mathrm{M})^{+}, 388[\mathrm{M}+2]^{+}$.
Anal. Calcd. for: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 74.58 ; \mathrm{H}, 5.73 ; \mathrm{N}, 7.25$. Found: C, 74.45; H, 5.80; N, 7.35.

7-(m-Methylphenoxy)-4-(p-methylphenyl)-2-methylthio-3H[1,5]benzodiazepine (3).

This compound was obtained as orange semisolid in 89% yield; ir (chloroform): $v \mathrm{C}=\mathrm{N} 1599, \mathrm{CH}_{3}-\mathrm{S} 1313, \mathrm{C}-\mathrm{N} 1257$ and 1240, C-O 1186 and $1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.33$ (s, $3 \mathrm{H}, \mathrm{C}_{3^{\prime}}-\mathrm{CH}_{3}$), $2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}\right), 3.40$ (bs, 2H, 3-H), 6.90 (d, 1H, J = 2.0, Hz, 2'-H), 6.90 (dd, 1H, J = 1.8, $\left.8.4 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 6.93$ (dd, $\left.1 \mathrm{H}, \mathrm{J}=1.9,8.1 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 6.96$ (dd, 1H, $\mathrm{J}=2.5,8.5 \mathrm{~Hz}, 8-\mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.25(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $9.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}$), 7.26 and $7.94\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}\right.$, phenyl protons of "D" ring), 7.37 (d, 1H, J = $8.5 \mathrm{~Hz}, 9-\mathrm{H}$); ms: m/z $386(\mathrm{M})^{+}$, 388 [M+2] ${ }^{+}$.

Anal. Calcd. for: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 74.58 ; \mathrm{H}, 5.73 ; \mathrm{N}, 7.25$. Found: C, 74.66; H, 5.82; N, 8.32.

7-(p-Methylphenoxy)-4-(p-methylphenyl)-2-methylthio-3H[1,5]benzodiazepine (4).

This compound was obtained as orange semisolid in 94% yield; ir (chloroform): $\mathrm{v} \mathrm{C}=\mathrm{N} 1596, \mathrm{CH}_{3}-\mathrm{S} 1317, \mathrm{C}-\mathrm{N} 1261$ and 1238, $\mathrm{C}-\mathrm{O}$ 1192 and $1083 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 2.33$ (s, 3H, $\mathrm{C}_{4}-\mathrm{CH}_{3}$), $2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}{ }^{-}-\mathrm{CH}_{3}\right.$), 2.44 (s, $3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}$), 3.40 (bs, 2 H , $3-\mathrm{H}), 6.94(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5,8.7 \mathrm{~Hz}, 8-\mathrm{H}), 6.97$ and 7.14 (AA'BB', 4H, $\mathrm{J}=8.4 \mathrm{~Hz}$, phenyl protons of "C" ring), $7.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}, 6-\mathrm{H})$, 7.25 and 7.93 (AA'BB', 4H, J = 8.1 Hz , phenyl protons of "D" ring), 7.35 (d, 1H, J = $8.7 \mathrm{~Hz}, 9-\mathrm{H})$; ms: m/z $386(\mathrm{M})^{+}, 388[\mathrm{M}+2]^{+}$.

Anal. Calcd. for: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 74.58 ; \mathrm{H}, 5.73 ; \mathrm{N}, 7.25$. Found: C, 74.68; H, 5.64; N, 7.31.

7-(o-Methoxyphenoxy)-4-(p-methylphenyl)-2-methylthio-3H[1,5]benzodiazepine (5).

This compound was obtained as orange semisolid in 95% yield; ir (chloroform): v $\mathrm{C}=\mathrm{N} 1591, \mathrm{CH}_{3}-\mathrm{S} 1315, \mathrm{C}-\mathrm{N} 1262$ and 1254, C-O 1182 and $1041 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 2.39 (s, 3H, C ${ }_{4}{ }^{\prime \prime}-\mathrm{CH}_{3}$), 2.44 (s, $3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}$), 3.40 (bs, $2 \mathrm{H}, 3-\mathrm{H}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{OCH}_{3}\right), 6.92(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8,7.8 \mathrm{~Hz}, 8-\mathrm{H}), 6.98$ (d, 1H, J = $2.7 \mathrm{~Hz}, 6-\mathrm{H}$), 7.04 (dd, $1 \mathrm{H}, \mathrm{J}=1.8,8.7 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}$), 7.09 (dd, $1 \mathrm{H}, \mathrm{J}=1.5,7.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}$), 7.11 (dt, $1 \mathrm{H}, \mathrm{J}=1.5,7.3 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}$), $7.14\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=1.8,7.2 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.24$ and $7.92\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}, \mathrm{J}\right.$ $=8.4 \mathrm{~Hz}$, phenyl protons of "D" ring), $7.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, 9-$ $\mathrm{H})$; ms: m/z $402(\mathrm{M})^{+}, 404$ [M+2] ${ }^{+}$.

Anal. Calcd. for: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, 71.61 ; $\mathrm{H}, 5.51 ; \mathrm{N}, 6.96$. Found: C, 71.50; H, 5.62 ; N, 6.91.

7-(m-Methoxyphenoxy)-4-(p-methylphenyl)-2-methylthio-3H[1,5]benzodiazepine (6).

This compound was obtained as orange semisolid in 83\% yield; ir (chloroform): v $\mathrm{C}=\mathrm{N} 1590, \mathrm{CH}_{3}-\mathrm{S} 1315, \mathrm{C}-\mathrm{N} 1263$ and 1260, C-O 1178 and $1042 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 2.40 (s, 3H, C4"-CH ${ }^{\prime \prime}$), 2.45 (s, $3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}$), 3.40 (bs, $2 \mathrm{H}, 3-\mathrm{H}$), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{3}{ }^{\prime}-\mathrm{OCH}_{3}\right), 6.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 6.64(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=1.8,8.4 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}$), 6.67 (dd, 1H, J = $1.8,8.4 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}$), 6.97 (dd, 1H, J = 2.7, 8.7 Hz, 8-H), 7.09 (d, 1H, J = $2.4 \mathrm{~Hz}, 6-\mathrm{H}$), $7.23\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.26$ and $7.95\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}, \mathrm{J}=8.4\right.$ Hz , phenyl protons of "D" ring), 7.37 (d, $1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 9-\mathrm{H})$; $\mathrm{ms}: \mathrm{m} / \mathrm{z} 402(\mathrm{M})^{+}, 404[\mathrm{M}+2]^{+}$.

Anal. Calcd. for: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, $71.61 ; \mathrm{H}, 5.51 ; \mathrm{N}, 6.96$. Found: C, 71.72; H, 5.45; N, 6.88.

7-(p-Methoxyphenoxy)-4-(p-methylphenyl)-2-methylthio-3H[1,5]benzodiazepine (7).

This compound was obtained as orange semisolid in 94% yield; ir (chloroform): v $\mathrm{C}=\mathrm{N} 1597, \mathrm{CH}_{3}-\mathrm{S} 1317, \mathrm{C}-\mathrm{N} 1258$ and 1250, C-O 1175 and $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 2.39 (s, 3H, C ${ }_{4}{ }^{\prime \prime}-\mathrm{CH}_{3}$), 2.44 (s, $3 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{3}$), 3.40 (bs, $2 \mathrm{H}, 3-\mathrm{H}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}{ }^{\prime}-\mathrm{OCH}_{3}\right), 6.89$ and $7.04\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}\right.$, phenyl protons of "C" ring), $6.93(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7,9.0 \mathrm{~Hz}, 8-\mathrm{H})$, $6.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz}, 6-\mathrm{H}), 7.25$ and $7.93\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}, \mathrm{J}=8.4\right.$ Hz , phenyl protons of "D" ring), 7.34 (d, $1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 9-\mathrm{H}$); $\mathrm{ms}: \mathrm{m} / \mathrm{z} 402(\mathrm{M})^{+}, 404[\mathrm{M}+2]^{+}$.

Anal. Calcd. for: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 71.61 ; \mathrm{H}, 5.51 ; \mathrm{N}, 6.96$. Found: C, 71.56; H, 5.61; N, 7.03.

4-(p-Methoxyphenyl)-2-methylthio-3H-7-phenoxy-[1,5]benzodiazepine (8).

This compound was obtained as orange semisolid in 87% yield; ir (chloroform): v C=N 1590, $\mathrm{CH}_{3}-\mathrm{S} 1316, \mathrm{C}-\mathrm{N} 1254$ and

1250, C-O 1177 and $1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 2.45 (s, 3H, S-CH $), 3.40(\mathrm{bs}, 2 \mathrm{H}, 3-\mathrm{H}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}{ }^{-1}-\mathrm{OCH}_{3}\right)$, $6.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7,8.7 \mathrm{~Hz}, 8-\mathrm{H}), 6.96$ and $7.99\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}, \mathrm{J}\right.$ $=9.0 \mathrm{~Hz}$, phenyl protons of "D" ring), $7.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}, 6-$ H), 7.07 (dd, 1H, J = 2.5, $8.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$), 7.07 (dd, $1 \mathrm{H}, \mathrm{J}=2.5,8.4$ Hz, 6'-H), 7.12 (dt, 1H, J = 1.8, $\left.7.5 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.35(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=$ $\left.0.9,7.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.35\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=0.9,7.5 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.37(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=8.7 \mathrm{~Hz}, 9-\mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 388(\mathrm{M})^{+}, 400[\mathrm{M}+2]^{+}$.

Anal. Calcd. for: $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, 71.10; H, 5.19; N, 7.21. Found: C, 71.19; H, 5.26; N, 7.13.

7-(o-Methoxyphenoxy)-4-(p-methoxyphenyl)-2-methylthio-3H[1,5]benzodiazepine (9).

This compound was obtained as orange semisolid in 93\% yield; ir (chloroform): v $\mathrm{C}=\mathrm{N} 1592, \mathrm{CH}_{3}-\mathrm{S} 1317, \mathrm{C}-\mathrm{N} 1255$ and 1250, C-O 1170 and $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 2.45 (s, 3H, S-CH3), $3.40(\mathrm{bs}, 2 \mathrm{H}, 3-\mathrm{H}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{OCH}_{3}\right)$, $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}{ }^{-}-\mathrm{OCH}_{3}\right), 6.95(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8,8.1 \mathrm{~Hz}, 8-\mathrm{H}), 6.96$ and $8.00\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}\right.$, phenyl protons of " D " ring), $7.01(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5,8.1 \mathrm{~Hz}, 6 '-\mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}, 6-\mathrm{H})$, 7.06 (dd, $\left.1 \mathrm{H}, \mathrm{J}=1.5,7.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.06(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=1.5,7.4 \mathrm{~Hz}$, $\left.4^{\prime}-\mathrm{H}\right), 7.15$ (dt, 1H, J = 1.6, $7.2 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}$), $7.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}$, 9-H); ms: m/z 418 (M) ${ }^{+}, 420[\mathrm{M}+2]^{+}$.
Anal. Calcd. for: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 68.87; H, 5.30; N, 6.69. Found: C, 68.80; H, 5.21; N, 6.79.

7-(m-Methoxyphenoxy)-4-(p-methoxyphenyl)-2-methylthio-3H[1,5]benzodiazepine (10).

This compound was obtained as orange semisolid in 97\% yield; ir (chloroform): $v \mathrm{C}=\mathrm{N} 1595, \mathrm{CH}_{3}-\mathrm{S} 1317, \mathrm{C}-\mathrm{N} 1252$ and 1250, C-O 1163 and $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 2.45 (s, 3H, S-CH3), $3.40\left(\mathrm{bs}, 2 \mathrm{H}, 3-\mathrm{H}\right.$), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{3^{\prime}}-\mathrm{OCH}_{3}$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}-\mathrm{OCH}_{3}\right), 6.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 6.63(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{J}=1.5,7.4 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 6.67\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=0.9,6.8 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right)$, 6.95 and 8.02 (AA'BB', $4 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}$, phenyl protons of "D" ring), $6.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7,8.7 \mathrm{~Hz}, 8-\mathrm{H}), 7.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}$, $6-\mathrm{H}), 7.22\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, 5{ }^{\prime}-\mathrm{H}\right), 7.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, 9-\mathrm{H})$; $\mathrm{ms}: \mathrm{m} / \mathrm{z} 418(\mathrm{M})^{+}, 420[\mathrm{M}+2]^{+}$.
Anal. Calcd. for: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 68.87; H, 5.30; N, 6.69. Found: C, 68.98; H, 5.22; N, 6.60.
7-(p-Methoxyphenoxy)-4-(p-methoxyphenyl)-2-methylthio-3H[1,5]benzodiazepine (11).

This compound was obtained as orange semisolid in 91% yield; ir (chloroform): v $\mathrm{C}=\mathrm{N} 1595, \mathrm{CH}_{3}-\mathrm{S} 1317, \mathrm{C}-\mathrm{N} 1255$ and 1249, C-O 1178 and $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 2.44 (s, 3H, S-CH3), 3.40 (bs, $2 \mathrm{H}, 3-\mathrm{H}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4^{\prime}}-\mathrm{OCH}_{3}\right)$, $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}{ }^{\prime \prime}-\mathrm{OCH}_{3}\right), 6.88$ and $7.04\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}\right.$, phenyl protons of "C" ring), $6.92(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7,8.7 \mathrm{~Hz}, 8-\mathrm{H})$,
6.95 and 7.99 (AA'BB', 4H, J $=9.0 \mathrm{~Hz}$, phenyl protons of "D" ring), $6.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, 6-\mathrm{H}), 7.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, 9-\mathrm{H})$; $\mathrm{ms}: \mathrm{m} / \mathrm{z} 418(\mathrm{M})^{+}, 420[\mathrm{M}+2]^{+}$.

Anal. Calcd. for: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 68.87$; $\mathrm{H}, 5.30 ; \mathrm{N}, 6.69$. Found: C, 68.78; H, 5.37; N, 6.77.

Acknowledgement]

This work was supported by UNAM-DGAPA project IN 204300. We wish to thank to J. Pérez and L. Velasco for their assistance in the acquisition of the mass spectral data and H. Rios and Isabel Chávez for the nmr determination; and R. Patiño and M. Adaya for the ir determination.

REFERENCES AND NOTES

[1] Author to whom correspondence should be addressed.
[2] Contribution from Instituto de Química UNAM.
[3] M. G. Bock, R. M. DiPardo, B. E. Evans, K. E. Rittle, W. L.Whitter, D. F. Veber, P. S. Anderson and R. M.Freidinger, J. Med. Chem., 32, 13 (1989); D. Bitran, D. Carlson, S. Leschiner and M. Gavish, European Journal of Pharmacology, 361, 235 (1998); J. D. Albright, M. F. Reich, E. G. Delos, J. P. Dusza, F. W. Sum, A. M. Aranapakam, M. Venkatesan, J. Coupet, P. S.Chan, X. Ru, H. Mazandarani and T. Bailey, J. Med. Chem., 41, 2442 (1998).
[4] E. Teboul and G. Chouinard, Can. J. Psychiatr., 36, 62 (1991).
[5] S. D. Gatzonis, E. K. Angelopoulos, E. G. Daskalopoulou, V. Mantouvalos, A. Chioni, C, Zorrunas and A. Saifakas, Drug and Alcohol Dependence, 59, 95 (2000); S. Grasso, G. De Sarro, A. De Sarro, N. Micale, M. Zapalà, G. Puia, M. Baraldi and C. De Micheli, J. Med. Chem., 42, 4414 (1999); A. Chimirri, G. De Sarro, A. De Sarro, R. Gitto, S Quartarone, M. Zappalà, A. Constanti and V. Libri, J. Med. Chem., 41, 3409 (1998).
[6] K. Matsumoto, S. I. Kohno, K. Ojima and H. Watanabe, Brain Research, 754, 325 (1997).
[7] Q. Huang, R. Liu, P. Zhang, X. He, R. McKernan, T. Gan, D. W. Bennett and J. M. Cook, J. Med. Chem., 41, 4130 (1998);
[8] T. M. DeLorey, R. C. Lin, B. McBrandy, X. He, J. M. Cook, J. Lameh and G. H. Loew, European Journal Pharmacology, 426, 45 (2001).
[9] S. R. Torres, T. S. Fröde, G. M. Nardi, N. Vita, R. Reeb, P. Ferrara, R. M. Ribeiro-do-Valle and R. C. Ferges, European Journal Pharmacology, 408, 199 (2000).
[10] E. Cortés, O. García and E. Hernández, J. Heterocyclic Chem., 36, 477 (1999).
[11] E. Cortés and M. P. Sánchez, J. Heterocyclic Chem., 36, 611 (1999).
[12] E. Cortés, M. I. Becerra and Y. M. Osornio, J. Heterocyclic Chem., 34, 1833 (1997).
[13] E. Cortés, and L. A. Araluce, J. Heterocyclic Chem., 34, 745 (1997).

